已知x+y+z=xyz,证明:x(1-y2)(1-z2)+y(1-x2)(1-z2)+z(1-x2)(1-y2)=4xyz
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/01 06:59:57
已知x+y+z=xyz,证明:x(1-y2)(1-z2)+y(1-x2)(1-z2)+z(1-x2)(1-y2)=4xyz
已知x+y+z=xyz,证明:x(1-y2)(1-z2)+y(1-x2)(1-z2)+z(1-x2)(1-y2)=4xyz
已知x+y+z=xyz,证明:x(1-y2)(1-z2)+y(1-x2)(1-z2)+z(1-x2)(1-y2)=4xyz
左边=x(1-z2-y2-y2z2)+y(1-z2-x2+x2z2)+(1-y2-x2+x2y2)
=(x+y+z)-xz2-xy2+xy2z2-yz2+yx2+yx2z2-zy2-zx2+zx2y2
=xyz-xy(y+x)-xz(x+z)-yz(y+z)+xyz(xy+yz+zx)
=xyz-xy(xyz-z)-xz(xyz-y)-yz(xyz-x)+xyz(xy+yz+zx)
=xyz+xyz+xyz+xyz
=4xyz=右边.
x+y+z+2=xyz,x,y,z.为正实数,证明:xyz(x-1)(y-1)(z-1)
已知 x,y,z都是正实数,且 x+y+z=xyz 证明 (y+x)/z+(y+z)/x+(z+x)/y≥2(1/x+1/y+1/z)^2
已知x+y+z=xyz,证明:x(1-y2)(1-z2)+y(1-x2)(1-z2)+z(1-x2)(1-y2)=4xyz
已知:xyz∈R+且x+y+z=1,求证:(1-x)(1-y)(1-z)≥8xyz该如何证明?
已知 (x+y-z)/z=(x-y+z)/y=(y+z-x)/x,且xyz≠0,求代数式 ((x+y)(y+z)(x+z))/xyz
已知x,y,z>0,xyz(x+y+z)=1,求证(x+y)(x+z)>=2
请教两道不等式证明题:1、若x,y,z属于R+,且x+y+z=xyz,证明不等式(y+z)/x+请教两道不等式证明题:1、若x,y,z属于R+,且x+y+z=xyz,证明不等式(y+z)/x+(z+x)/y+(x+y)/z大于等于2(1/x+1/y+1/z)^2.2、已知0小于等于a
已知X+Y+Z=0,求(X+Y)(Y+Z)(X+Z)+XYZ的值.
已知x+y+z=0,求(x+y)(y+z)(z+x)+xyz的值
已知x+y+z=0,求(x+y)(y+z)(x+z)+xyz的值
已知x^2+y^2+z^2=1,求证x+y+z-2xyz
已知x/[y]+y/[y]+[z]/z=-1,求分式[xyz]/xyz的值/是分号,[ ]是绝对值.
已知:(x+y-z)/z=(x-y+z)/y+(y+z-x)/x,且xyz≠0,求代数式[(x+y)(y+z)(x+z)]/xyz的值已知:(x+y-z)/z=(x-y+z)/y=(y+z-x)/x,且xyz≠0,求代数式[(x+y)(y+z)(x+z)]/xyz的值 题目中写错个等号,汗...
已知(X+Y)/Z=(X+Z)/Y=(Y+Z)/X,且XYZ≠0,则(X+Y)(Y+Z)(Z+x)/XYZ的值为
已知x,y为正数,且xyz(x+y+z)=1求代数式(x+y)(y+z)的最小值
已知:(x+y)/z=(x+z)/y=(z+y)/x,且xyz不等于0,则分式(x+y)(x+z)(z+x)/xyz的值为?
证明 已知xyz∈R^+, x^2x * y^2y* z^2z≥x^y+x* y^z+x * z^x+y
已知x+y+z=0求证x*x*x+y*y*y+z*z*z=3xyz