设f(x)在[0,1]上连续,且f(x)>0,证明:存在ξ属于(0,1)使得ξf(ξ)=f(x)在[ξ,1]上的定积分这是数学公式.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/01 07:38:26
设f(x)在[0,1]上连续,且f(x)>0,证明:存在ξ属于(0,1)使得ξf(ξ)=f(x)在[ξ,1]上的定积分这是数学公式.
设f(x)在[0,1]上连续,且f(x)>0,证明:存在ξ属于(0,1)使得ξf(ξ)=f(x)在[ξ,1]上的定积分
这是数学公式.
设f(x)在[0,1]上连续,且f(x)>0,证明:存在ξ属于(0,1)使得ξf(ξ)=f(x)在[ξ,1]上的定积分这是数学公式.
令 F(x) = xf(x) - ∫[x,1] f(t) dt
F(x)在[0,1]连续
F(0) = - ∫[0,1] f(t) dt < 0
F(1) = f(1) > 0
因此存在 ξ∈(0,1) 使 F(ξ) = 0
即 ξf(ξ) = ∫[ξ,1] f(t) dt
F(x) = xf(x) - ∫[x,1] f(t) dt F(x)在[0,1]连续
F(0) = - ∫[0,1] f(t) dt < 0
F(1) = f(1) > 0
现在已经证明出来存在 ξ∈(0,1) 使 F(ξ) = 0
所以 ξf(ξ) = ∫[ξ,1] f(t) dt
设f(x)在[0,1]上具有二阶连续导数,且|f''(x)|
设f(x)在[0,1]上连续,且f(x)
高等数学问题:设f(x)在[0,1]上连续,且f(x)
设f(x)在区间[0,1]上连续,且f0)f(1)
设f(x)在[0,1]上连续,且f(t)
设f(x)在[0,1]上有连续导数,且f(x)=f(0)=0.证明
一道高数题,设函数f(x)在[0,+∞)上连续,且f(x)=x(e^-x)+(e^x)∫(0,1) f(x)dx,则f(x)=?设函数f(x)在[0,+∞)上连续,且f(x)=x(e^-x)+(e^x) ∫(0,1) f(x)dx ,则f(x)=
设f(x)在[a,b]上连续,且a
设f(x)在[a,b]上连续,且a
设f(x)在[a,b]上连续,且a
设函数f(x)在闭区间[0,1]上连续,且0
设函数y=f(x)在[0,1]上连续,且0
设函数y=f(x)在[0,1]上连续,且0
一道高数题,证明:设f(x)在[0,1]上连续,且0
设函数f(x)在[0,无穷)上连续可导,且f(0)=1,|f'(x)|0时,f(x)
设f(x)在[0,2]上连续,在(0,2)上可微,且f(0)*f(2)>0,f(0)*f(1)
设f(x)在[0,+∞)上连续,且∫(0,x)f(t)dt=x(1+cosx),则f(x)=?
设f''(x)在[0,1]上连续,f'(1)=0,且f(1)-f(2)=2,则∫(0,1)xf''(x)dx=