已知函数f(x)=x^2+ax+b,a,b为常数,集合A={x属于R|f(x)=x},B={X属于R|f(f(x))=x}(1).证明:A属于B(2)当A={-1,3}时,求集合B

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/01 14:01:42

已知函数f(x)=x^2+ax+b,a,b为常数,集合A={x属于R|f(x)=x},B={X属于R|f(f(x))=x}(1).证明:A属于B(2)当A={-1,3}时,求集合B
已知函数f(x)=x^2+ax+b,a,b为常数,集合A={x属于R|f(x)=x},B={X属于R|f(f(x))=x}
(1).证明:A属于B
(2)当A={-1,3}时,求集合B

已知函数f(x)=x^2+ax+b,a,b为常数,集合A={x属于R|f(x)=x},B={X属于R|f(f(x))=x}(1).证明:A属于B(2)当A={-1,3}时,求集合B
(1)证明:
对于任意的元素x∈A,都有f(x)=x^2+ax+b=x
而f(f(x))=[f(x)]^2+af(x)+b=x^2+ax+b=x.
因此这样的x都有:x∈B
(2)
x=-1时:f(-1)=1-a+b=-1;
x=3时:f(3)=9+3a+b=3;
于是解二元一次方程组得:
a=-1,b=-3.
因而确定函数f(x)=x^2-x-3
则f(f(x))=(x^2-x-3)^2-(x^2-x-3)-3
=x^4-2x^3-6x^2+7x+9
令f(f(x))=x
则x^4-2x^3-6x^2+6x+9=0
分解因式(x+1)(x-3)(x^2-3)=0
即(x+1)(x-3)(x+√3)(x-√3)=0
所以有四个x的解属于集合B.
B={1,-3,√3,-√3}

由映射定义
设A和B是两个非空集合,如果按照某种对应关系f,对于集合A中的任何一个元素a,在集合B中都存在唯一的一个元素b与之对应,那么,这样的对应(包括集合A,B,以及集合A到集合B的对应关系f)叫做集合A到集合B的映射(Mapping),记作f:A→B。其中,b称为a在映射f下的象,记作:b=f(a); a称为b关于映射f的原象。集合A中多有元素的像的集合记作f(A)。...

全部展开

由映射定义
设A和B是两个非空集合,如果按照某种对应关系f,对于集合A中的任何一个元素a,在集合B中都存在唯一的一个元素b与之对应,那么,这样的对应(包括集合A,B,以及集合A到集合B的对应关系f)叫做集合A到集合B的映射(Mapping),记作f:A→B。其中,b称为a在映射f下的象,记作:b=f(a); a称为b关于映射f的原象。集合A中多有元素的像的集合记作f(A)。

收起