已知中心在原点的双曲线C的一个焦点F(-3,0)一条渐近线√5x-2y=0求双曲线方程.若以k且k(不为0)为斜率的直线L与双曲线L相交于两个不同交点,M N且线的M,N的垂直平分线与坐标轴围成的三

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/01 07:33:47

已知中心在原点的双曲线C的一个焦点F(-3,0)一条渐近线√5x-2y=0求双曲线方程.若以k且k(不为0)为斜率的直线L与双曲线L相交于两个不同交点,M N且线的M,N的垂直平分线与坐标轴围成的三
已知中心在原点的双曲线C的一个焦点F(-3,0)一条渐近线√5x-2y=0
求双曲线方程.若以k且k(不为0)为斜率的直线L与双曲线L相交于两个不同交点,M N且线的M,N的垂直平分线与坐标轴围成的三角形S为2分之81.求K取值范围.

已知中心在原点的双曲线C的一个焦点F(-3,0)一条渐近线√5x-2y=0求双曲线方程.若以k且k(不为0)为斜率的直线L与双曲线L相交于两个不同交点,M N且线的M,N的垂直平分线与坐标轴围成的三
(1)设双曲线 的方程为:x^2/a^2-y^2/b^2=1
由题设得a^2+b^2=9 b/a=√5/2
解得:a^2=4 b^2=5
所以双曲线方程为:x^2/4-y^2/5=1
(2)设直线 的方程为y=kx+m
点M(x1,y1) (x2,y2)的坐标满足方程组:
y=kx+m x^2/4-y^2/5=1
整理得:
(5-4k^2)*x^2-8kmx-4m^2-20=0
此方程有两个一等实根,于是5-4k^2≠0
且△>0
整理得:m^2+5-4k^2>0 .③:
:
由根与系数的关系可知线段 的中点坐标(x0,y0)满足:
x0=4km/5-4k^2 y0=5m/5-4k^2
从求出线段 的垂直平分线方程,
此直线与 轴, 轴的交点坐标分别为(9km/5-4k^2,0),(0,9m/5-4k^2)
由题设可得:
S=81/2
整理得:
m^2=(5-4k^2)^2/|k,k≠0
将上式代入③式得|
(4k^2-5)()4k^2-|k|-5)>0
解得:0

已知双曲线C的一个焦点为F(4,0),中心在原点,且经过点A(4,6),求双曲线C的方程 】 已知双曲线C的一个焦点为F(4,0),中心在原点,且经过A(4,6)求双曲线C的方程 已知双曲线的一个焦点F(-3,0),中心在原点,一条渐近线方程为根号3X-3Y=0,求双曲线C的方程 已知双曲线C的中心在原点,抛物线y^2=2根号5x 的焦点是双曲线C的一个焦点,且双曲线C过点(1,根号3)已知双曲线C的中心在原点,抛物线y^2=2根号5x 的焦点是双曲线C的一个焦点,且双曲线C过点(1,根 已知双曲线C的中心在原点,抛物线y方=-2更号5X的焦点是双曲线的一个焦点,且双曲线过点(-1,更号3)已知双曲线C的中心在原点,抛物线y2=-2更号5X的焦点是双曲线的一个焦点,且双曲线过点(- 已知双曲线c的中心在原点,抛物线y^2=8x的焦点是双曲线C的一个焦点,且双曲线c过点(sqr2,sqr3).求双曲线C的方程 已知双曲线C的中心在原点,右焦点与抛物线y^=8x 已知双曲线中心在原点,一个焦点为F(0,√6),且a=1,则此双曲线的标准方程为___ 已知等轴双曲线的中心在原点,且一个焦点F1(-6,0),求等轴双曲线的方程 已知中心在原点的双曲线C的右焦点为F(3,0),离心率等于3/2,则C的方程是什么 已知中心在原点的双曲线C的右焦点为F(3,0),离心率等于3分之2,则C的方程是 已知中心在原点的双曲线C的右焦点为F(3,0) ,离心率等于3 2 ,则C的方程是( ) 已知双曲线C的中心在原点且焦点在X轴上,过双曲线C的一个焦点且与双曲线有且只有一个交点的直线的方程为4x-3y+20=0.(1)求双曲线C的方程.(2)若过双曲线的左焦点F1任作直线L,与过右焦点F2的直 已知双曲线中心在原点且一个焦点为F(√7,0),直线Y=X-1与其相交于M、N两点,MN中点的横坐标为-2/3,求此双曲线的方程 已知中心在原点的双曲线C的一个焦点是F1(3,0),一条渐近线方程是√5x-2y=0,求双曲线C的方程 已知双曲线的中心在原点,且它的一个焦点为F(根号7,0).已知双曲线的中心在原点,且它的一个焦点为F(根号7,0),直线y=x-1与其相交于M,N两点,线段MN中点的横坐标为-2/3,求此双曲线方程要具体 已知中心在原点的双曲线C的右焦点为F(3,0),离心率等于,则C的方程是(2013广东)已知中心在原点的双曲线C的右焦点为F(3,0),离心率等于3/2,则C的方程是? 已知中心在原点的双曲线C的右焦点为(2,0)右顶点为(根号3,0)求双曲线c的方程.急,