证明:方程x=asinx+b(a>0,b>0至少有一个正根,且它不超过a+b这是高数里面有关极限和函数连续性的题,所以希望高手用这方面的知识解答.
证明:方程x=asinx+b(a>0,b>0至少有一个正根,且它不超过a+b这是高数里面有关极限和函数连续性的题,所以希望高手用这方面的知识解答.
证明:方程x=asinx+b(a>0,b>0至少有一个正根,且它不超过a+b
这是高数里面有关极限和函数连续性的题,所以希望高手用这方面的知识解答.
证明:方程x=asinx+b(a>0,b>0至少有一个正根,且它不超过a+b这是高数里面有关极限和函数连续性的题,所以希望高手用这方面的知识解答.
证明:设f(x)=asinx+b-x,a>0,b>0.
f(x)在R上连续,f(0)=b>0,f(a+b)=asin(a+b)+b-(a+b)=asin(a+b)-a=<0
而且对任意的x>a+b,f(x)=asinx+b-x
若f(a+b)<0,则存在ξ∈(0,a+b),使得f(ξ)=0,即ξ为方程的一个正根.
所以方程x=asinx+b(a>0,b>0)至少有一个正根,且它不超过a+b.
证:令 f(x)=x-asinx-b,则函数f(x)在闭区间[0,a+b]上连续
且 f(0) = -b<0,f(a+b) = a(1 - sinx)≥0
当f(a+b) = 0 ,易得 x = a+b;
当f(a+b)>0 ,由根的存在定理,至少存在一点ζ∈(0,a+b),使得 f(ζ) = 0
所以方程x=asinx+b(a>0,b>0)至少有一个正根,...
全部展开
证:令 f(x)=x-asinx-b,则函数f(x)在闭区间[0,a+b]上连续
且 f(0) = -b<0,f(a+b) = a(1 - sinx)≥0
当f(a+b) = 0 ,易得 x = a+b;
当f(a+b)>0 ,由根的存在定理,至少存在一点ζ∈(0,a+b),使得 f(ζ) = 0
所以方程x=asinx+b(a>0,b>0)至少有一个正根,并且它不超过a+b
祝您学习进步!!!
望采纳!
收起
解 你如是中学生就看这个 如你是大学生,就看这个 证:令 f(x)=x-asinx-b,则函数f(x)在闭区间[0,a+b]上连续 2、若f(a+b)=0 方程x=asinx+b根就是a+b
且 f(0) = -b<0,f(a+b) =a+b-asin(a+b)-b= a(1 - sin(a+b))≥0
1、若f(a+b)>0 由于f(0)*f(a+b)<0
由根的存在定理,至少存在一点x0∈(0,a+b),使得 f(x0) = 0 所以 x0<a+b
所以方程x=asinx+b(a>0,b>0)至少有一个正根x0,并且x0<=a+b