证明:方程x=asinx+b(a>0,b>0至少有一个正根,且它不超过a+b这是高数里面有关极限和函数连续性的题,所以希望高手用这方面的知识解答.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/01 07:56:59

证明:方程x=asinx+b(a>0,b>0至少有一个正根,且它不超过a+b这是高数里面有关极限和函数连续性的题,所以希望高手用这方面的知识解答.
证明:方程x=asinx+b(a>0,b>0至少有一个正根,且它不超过a+b
这是高数里面有关极限和函数连续性的题,所以希望高手用这方面的知识解答.

证明:方程x=asinx+b(a>0,b>0至少有一个正根,且它不超过a+b这是高数里面有关极限和函数连续性的题,所以希望高手用这方面的知识解答.
证明:设f(x)=asinx+b-x,a>0,b>0.
f(x)在R上连续,f(0)=b>0,f(a+b)=asin(a+b)+b-(a+b)=asin(a+b)-a=<0
而且对任意的x>a+b,f(x)=asinx+b-x若f(a+b)=0,则a+b即为方程x=asinx+b的一个正根,
若f(a+b)<0,则存在ξ∈(0,a+b),使得f(ξ)=0,即ξ为方程的一个正根.
所以方程x=asinx+b(a>0,b>0)至少有一个正根,且它不超过a+b.

证:令 f(x)=x-asinx-b,则函数f(x)在闭区间[0,a+b]上连续
且 f(0) = -b<0,f(a+b) = a(1 - sinx)≥0
当f(a+b) = 0 ,易得 x = a+b;
当f(a+b)>0 ,由根的存在定理,至少存在一点ζ∈(0,a+b),使得 f(ζ) = 0
所以方程x=asinx+b(a>0,b>0)至少有一个正根,...

全部展开

证:令 f(x)=x-asinx-b,则函数f(x)在闭区间[0,a+b]上连续
且 f(0) = -b<0,f(a+b) = a(1 - sinx)≥0
当f(a+b) = 0 ,易得 x = a+b;
当f(a+b)>0 ,由根的存在定理,至少存在一点ζ∈(0,a+b),使得 f(ζ) = 0
所以方程x=asinx+b(a>0,b>0)至少有一个正根,并且它不超过a+b
祝您学习进步!!!
望采纳!

收起

解 你如是中学生就看这个

 

 

如你是大学生,就看这个

证:令 f(x)=x-asinx-b,则函数f(x)在闭区间[0,a+b]上连续 
且 f(0) = -b<0,f(a+b) =a+b-asin(a+b)-b= a(1 - sin(a+b))≥0 
 1、若f(a+b)>0   由于f(0)*f(a+b)<0
由根的存在定理,至少存在一点x0∈(0,a+b),使得 f(x0) = 0 所以 x0<a+b

2、若f(a+b)=0 方程x=asinx+b根就是a+b
所以方程x=asinx+b(a>0,b>0)至少有一个正根x0,并且x0<=a+b

证明方程x=asinx+b(a>0,b>0)至少有一个正根,并且它不超过a+b 证明方程 x=asinx+b至少有一个正根,其中a>0,b>0,并且不超过a+b. 证明方程x=asinx+b(a>0,b>0)至少有一个不超过a+b的正根. 证明方程x=asinx+b(a>0,b>0)至少有一个不大于b+a的正根 证明方程x=asinx+b,其中a>0,b>0,至少有一个正根,并且它不超过a+b 证明:方程x=asinx+b(a>0,b>0)至少有一个正根,并且它不超过a+b 证明方程x=asinx+b至少有一个正根并且它不大于a+b(其中a>b,b>0) 大一高数.证明方程x=asinx+b,其中a大于0,b大于0,至少有一个正根且不超过a+b 证明方程x=asinx+b,其中a>0,b>0至少有一个正根并且它不超过a+b 求一道大一数学题证明:方程x=asinx+b(其中a>0,b>0)至少有一个正根,并且不超过a+b 求助大一函数零点证明问题证明方程x=asinx+b,其中a>0,b>o,至少有一个正根,并且它不超过a+b.我知道,先确定根区间,代入说明一正一负即可用零点定理证明,我方程化简成这样f(x)=x-asinx-b,区间[0,a+b], 数学怎么证明有界 证明f(x)=sinx/(2+cosx)是有界函数?《高等数学》还有证明方程x=asinx+b(a>0,b>0)至少有一个不超过a+b的正根? 求解一道高数证明题!证明方程x=asinx+b,其中a大于0,b大于0,至少有一个正根,并且不超过a+b.(令f(x)=asinx+b-x,再用介值定理或零点定理) 证明:方程x=asinx+b(a>0,b>0至少有一个正根,且它不超过a+b这是高数里面有关极限和函数连续性的题,所以希望高手用这方面的知识解答. y=asinx-b(a y=asinx-b(a 高数 连续x=asinx+b ,则 F(x)=x-asinx-b 为什么在[0,a+b]连续? 证明一下辅助角公式asinx+bsinx=√(a^2+b^2)sin(x+θ)