利用n边形的内角和等于(n-2)乘180度的结论证明:任意多边形的外角和等于360度
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/01 08:31:44
利用n边形的内角和等于(n-2)乘180度的结论证明:任意多边形的外角和等于360度
利用n边形的内角和等于(n-2)乘180度的结论证明:任意多边形的外角和等于360度
利用n边形的内角和等于(n-2)乘180度的结论证明:任意多边形的外角和等于360度
求证:n边形的外角和等于360度
n变形外角和=180°-角1+180°-角2+180°-角3……+180°-角n
=180°n-(n变形内角和)
=180°n-180°*(n-2)
=180°n-180°n+2*180°
=360°
答:n边形的外角和等于360度.
利用n边形的内角和等于(n-2)乘180度的结论证明:任意多边形的外角和等于360度
利用N边形的内角和等于(n-2)×180度 的结论证明:任意多边型的外角和等于360度
利用N边形的内角和等于(n-2)×180度 的结论证明:任意多边型的外角和等于360度
N边形的内角和等于?
n边形的内角和等于
求证:n边形的内角和等于(n-2)*180度 已知:求证:证明:
证明:N边形的内角和等于(N-2)*180度.
证明:n边形的内角和等于(n-2)×180°
证明:n边形的内角和等于(n-2)·180°
求证,n边形的内角和等于(n-2)*180 已知:求证:证明
说明n边形的内角和等于180°·(n-2)
证明:n边形的内角和等于(n一2)•180°
我们知道三角形的内角和等于180°,四边形的内角和等于360°,如果边数为n的多边形,其内角和为(n-2)180°;反过来,已知多边形的内角和,同样利用内角和公式可求出这个多边形的边数,如:一个
我们知道三角形的内角和等于180°,四边形的内角和等于360°,如果边数为n的多边形,其内角和为(n-2)180°;反过来,已知多边形的内角和,同样利用内角和公式可求出这个多边形的边数,如:一个
若正N边形的一个内角与正2N边形的一个内角的和等于225度,则N等于多少?
证明:N边形的内角和等于(N-2)*180度.方法越多越好,至少三种
正n边形的一个内角与正2n边形的一个内角的和等于270°,求n的值.如题
在N边形某一边取一点P,连结P与多边形的每一个顶点,可得多少个3角形怎样说明N边形的内角和等于(N-20)乘180