1.设a.b为正数,且a+b或=1 怎么证明的呀.不太会.2.将5名志愿者分配到3个不同的奥运场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数为(150) 3.已知函数f(x)=x3+ax2-2x+5在《-2/3,1》(
1.设a.b为正数,且a+b或=1 怎么证明的呀.不太会.2.将5名志愿者分配到3个不同的奥运场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数为(150) 3.已知函数f(x)=x3+ax2-2x+5在《-2/3,1》(
1.设a.b为正数,且a+b或=1 怎么证明的呀.不太会.
2.将5名志愿者分配到3个不同的奥运场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数为(150)
3.已知函数f(x)=x3+ax2-2x+5在《-2/3,1》(闭区间)上单调递减,在(1,+∞)上单调递增,且函数f(x)的导数记为f*(x),则下列结论正确的个数是(B) 1.-2/3是方程f*(x)的根 2.1是方程f*(x)=0的根 3.有极小值f(1) 4.极大值f(-2/3) 5.a=-1/2 A.2 B.3 C.4 D.5
我怎么感觉是2345都对呀~
1.设a.b为正数,且a+b或=1 怎么证明的呀.不太会.2.将5名志愿者分配到3个不同的奥运场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数为(150) 3.已知函数f(x)=x3+ax2-2x+5在《-2/3,1》(
1.(1/a+1/b)(a+b)=2+(b/a)+(a/b)≥4
1/a+1/b≥4/(a+b)≥1
2.若分配方案是2、2、1;则有[C(5,2)C(3,2)C(1,1)/P(2,2)]*P(3,3)=90
若分配方案是3、1、1;则有[C(5,3)C(2,1)C(1,1)/P(2,2)]*P(3,3)=60
故共有150种.(本题涉及等额分组问题)
3.当 x∈[-2/3,1]时,f'(x)=3x^2+2ax-2≤0
当x∈(1,+∞)时,f'(x)=3x^2+2ax-2>0
故:x=1是f'(x)=0的解,得:a=-1/2,且f(1)为极小值.
只有“有极小值f(1)”和“a=-1/2”正确
选(B)