已知数列an bn的通项an bn 满足 bn=an乘2的n次方 且数列an的前n项和sn=n2次方-2n1 求an通项公式,2.bn的前N项和Tn
已知数列an bn的通项an bn 满足 bn=an乘2的n次方 且数列an的前n项和sn=n2次方-2n1 求an通项公式,2.bn的前N项和Tn
已知数列an bn的通项an bn 满足 bn=an乘2的n次方 且数列an的前n项和sn=n2次方-2n
1 求an通项公式,2.bn的前N项和Tn
已知数列an bn的通项an bn 满足 bn=an乘2的n次方 且数列an的前n项和sn=n2次方-2n1 求an通项公式,2.bn的前N项和Tn
数列an的前n项和Sn=n^2-2n
n=1时
a1=S1=1-2=-1
n>=2时
an=Sn-S(n-1)=(n^2-2n)-((n-1)^2-2(n-1))
=2n-3
n=1时,满足an=2n-3
∴an=2n-3
(2)
bn=an*2^n
=(2n-3)*2^n
b1=-1*2^1
b2=1*2^2
b3=3*2^3
.
bn=(2n-3)*2^n
错位相减法
Tn=b1+b2+b3+.+bn
=-1*2^1+1*2^2+3*2^3+.+(2n-3)*2^n
2Tn= -1*2^2+1*2^3+3*2^4+.+(2n-1)*2^n+(2n-3)*2^(n+1)
Tn-2Tn=-1*2^1+2*2^2+2*2^3+.+2*2^n-(2n-3)*2^(n+1)
-2Tn=-2+2(2^2+2^3+.+2^n)-(2n-3)*2^(n+1)
-2Tn=-2+2*(2^2-2^n*2)/(1-2)-(2n-3)*2^(n+1).等比数列求和公式
-2Tn=-2+2*(2^(n+1)-4)-(2n-3)*2^(n+1)
Tn=1-(2^(n+1)-4)+(2n-3)*2^n
=5+(2n-5)*2^n
验证
n=1,b1=T1=5+(-3)*2=-1
成立