求函数y=cosx+cos(x-π/3)的最大值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/01 08:18:45

求函数y=cosx+cos(x-π/3)的最大值
求函数y=cosx+cos(x-π/3)的最大值

求函数y=cosx+cos(x-π/3)的最大值
y=cosx+cos(x-π/3)
=cosx+cosxcos(π/3)+sinxsin(π/3)
=(3/2)cosx+(√3/2)sinx
=√3* [cosx*(√3/2)+sinx*(1/2)]
=√3[cosxsin(π/3)+cosxsin(π/3)]
=√3sin(x+π/3)
所以函数y=cosx+cos(x-π/3)的最大值为√3



y=cosx+cos(x-π/3)
=2cos[(x+x-π/3)/2]·cos[(x-(x-π/3))/2]
=2cos(x-π/6)cosπ/6
=√3cos(x-π/6)

函数y=cosx+cos(x-π/3)的最大值为√3

(这是基于和差化积公式cos α+cos β=2cos[(α+β)/2]·c...

全部展开



y=cosx+cos(x-π/3)
=2cos[(x+x-π/3)/2]·cos[(x-(x-π/3))/2]
=2cos(x-π/6)cosπ/6
=√3cos(x-π/6)

函数y=cosx+cos(x-π/3)的最大值为√3

(这是基于和差化积公式cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2] )

【数学辅导团】为您解答,
不理解请追问
理解请及时选为满意回答!(*^__^*)谢谢!

收起