我现在读高一了,可是对函数还是有很大的疑问.想请高手帮我想个容易理解函数的定义!我对高一的函数还不是很懂,想通过大家的建议弄懂函数.
我现在读高一了,可是对函数还是有很大的疑问.想请高手帮我想个容易理解函数的定义!我对高一的函数还不是很懂,想通过大家的建议弄懂函数.
我现在读高一了,可是对函数还是有很大的疑问.想请高手帮我想个容易理解函数的定义!
我对高一的函数还不是很懂,想通过大家的建议弄懂函数.
我现在读高一了,可是对函数还是有很大的疑问.想请高手帮我想个容易理解函数的定义!我对高一的函数还不是很懂,想通过大家的建议弄懂函数.
1.了解映射的概念,理解函数的概念.
2.了解函数的单调性和奇偶性的概念,掌握判断一些简单函数的单调性和奇偶性的方法,并能利用函数的性质简化函数图像的绘制过程.
3.了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数.
4.理解分散指数的概念,掌握有理指数幂的运算性质.掌握指数函数的概念、图像和性质.
5.理解对数的概念,掌握对数的运算性质.掌握对数函数的概念、图像和性质.
6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题.
函数是中学数学的重点内容,函数概念贯穿中学数学的始终,利用函数知识、思想可以处理、解决很多数学问题.因此,近几年来,每年的高考数学试题,都贯穿着函数及其性质这条主线.显现出“函数热”居高不下的趋势.函数问题具有较强的伸缩性,既可以“低档题”——选择、填空形式出现(如映射、函数基本性质及反函数等多属此类),也可以“中档题”、“高档题”形式出现并多与其它问题联系在一起.因此,本章内容是我们高中数学问题的基础内容,也是重点内容,是高考考查的主体内容,我们在学习中一定要认真对待,扎扎实实地学习本章内容.为今后的学习打下良好的基础.
函数是数学中最重要的概念之一,它不但是数学研究的对象,同时也是数学中常用的一种思想方法,函数的思想广泛地渗透到学习数学的全过程及其他各学科之中,所以各类考试把函数作为重点考查内容.
核心知识
1.函数的定义
(1)函数的传统定义:设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它对应,那么就称y是x的函数,x叫做自变量.
(2)函数的近代定义:设A,B都是非空的数的集合,f:x→y是从A到B的一个对应法则,那么从A到B的映射f:A→B就叫做函数,记作y=f(x),其中x∈A,y∈B,原象集合A叫做函数f(x)的定义域,象集合C叫做函数f(x)的值域.
上述两个定义实质上是一致的,只不过传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发,侧重点不同.函数实质上是从集合A到集合B的一个特殊的映射,其特殊性在于集合A、B都是非空数集.自变量的取值集合叫做函数的定义域,函数值的集合C叫做函数的值域.
这里应该注意的是,值域C并不一定等于集合B,而只能说C是B的一个子集.
2.函数的三要素
定义域A,值域C以及从A到C的对应法则f,称为函数的三要素.由于值域可由定义域和对应法则唯一确定,所以也可以说函数有两要素:定义域和对应法则.两个函数当且仅当定义域与对应法则分别相同时,才是同一函数.