O、A、B是在平面上不共线的三点,若满足向量AC=CB 则= 答案我知道 不知道过程 怎么理解的O、A、B是在平面上不共线的三点,若点C满足向量AC=CB 则向量OC= 答案我知道 不知道过程 怎么理解的A OA

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/01 07:21:17

O、A、B是在平面上不共线的三点,若满足向量AC=CB 则= 答案我知道 不知道过程 怎么理解的O、A、B是在平面上不共线的三点,若点C满足向量AC=CB 则向量OC= 答案我知道 不知道过程 怎么理解的A OA
O、A、B是在平面上不共线的三点,若满足向量AC=CB 则= 答案我知道 不知道过程 怎么理解的
O、A、B是在平面上不共线的三点,若点C满足向量AC=CB 则向量OC= 答案我知道 不知道过程 怎么理解的
A OA-OB B OA+OB C 1/2OA-1/2OB D 1/2OA+1/2OB ( 向量 )

O、A、B是在平面上不共线的三点,若满足向量AC=CB 则= 答案我知道 不知道过程 怎么理解的O、A、B是在平面上不共线的三点,若点C满足向量AC=CB 则向量OC= 答案我知道 不知道过程 怎么理解的A OA
D 1/2OA+1/2OB ( 向量 )
点C满足向量AC=CB C为AB中点
向量OC=向量OA+向量AC
向量OC=向量OB+向量BC 相加
2向量OC=向量OA+向量AC+向量OB+向量BC
C为AB中点 向量AC+向量BC=0向量
2向量OC=向量OA+向量OB
向量OC=1/2向量OA+1/2向量OB

就是一个三角形的中线问题,选D

AC=CB 所以 C 点是 AB 的中点。。 无论O在哪里 画个图 你就能选 出答案 了。。应该是D

已知O,A,B是平面上不共线的三点,若点C满足 O、A、B是在平面上不共线的三点,若满足向量AC=CB 则= 答案我知道 不知道过程 怎么理解的O、A、B是在平面上不共线的三点,若点C满足向量AC=CB 则向量OC= 答案我知道 不知道过程 怎么理解的A OA 已知O,A,B是平面上不共线的三点,直线AB上有一点C,满足2向量AC+向量CB=0,若向量OC=λOA+μOB,(其中λ,μ是 已知O,A,B是平面内不共线的三点,满足向量OP=A*向量OA+B*向量OB,则P,A,B三点共线的充要条件是A+B=? O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足向量OP = 向量OA+λ(向量AB +向量AC ),O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足向量OP = 向量OA+λ(向量AB +向量AC λ O是平面上一定点,A,B,C是平面上不共线三点,求p的见相册同名图片 平面向量的基本定理及坐标表示一、向量e1、e2是平面内一组基底,若ke1+he2恒成立,则k= h= O是平面上一定点,A、B、C是平面上不共线的三点,动点满足向量OP=向量OA+K(向量AB/向量AB的模+向量AC/向 已知O,A,B是平面上不共线的三点,直线AB上有一点C,满足2倍的向量AC+向量CB=0 则oc= 在数列{an}中,an+1=an+a(n属于N,a为常数),若平面上的三个不共线的非零向量OA,向量OB,向量OC满足向量OC=a1向量OA+a2010向量OB,三点A,B,C共线,且该直线不过O点则S2010等于 O是平面上一点,A B C是平面上不共线的三点,平面内的的动点P满足向量OP=向量OA+X(向量AB+向量AC),若X=1/2向量PA*(向量PB+向量PC)的值为 平面上的点P与不共线三点A,B,C满足关系式:PA+PB+PC=AB,则下列结论正确的是平面上的点P与不共线三点A,B,C满足关系式:PA+PB+PC=AB,则下列结论正确的是A.P在CA上,且CP=2PA B.P在AB上,且AP=PB C.P在BC且BP=2PC 为什么 已知A,B,C是平面上不共线的三点,O是三角形ABC的重心,动点P满足向量OP=1/3(1/2向量OA+1/2向量OB+2向量OC),则点P一定为AB边的三等分点.若P不是三等份点,是什么点? 若O为平面内一点,A、B、C是平面上不共线三点,动点P满足向量OP=向量OA+λ(向量AB+1/2向量BC)λ∈(0,+无穷),则P的轨迹一定通过△ABC的().A.重心 B.垂心 C.外心 D.内心 O是平面上一定点,A,B,C是平面上不共线的三个点,动点P满足OP=OA+λ(AB/|AB|+AC/|AC|),λ∈[0,+∞),为啥是外心啊 已知O是平面上一定点,A,B,C是平面上不共线的三个点,动点P满足OP=OA+λ(AB/sinc+AC/sinb),则P的轨迹一定通过△ABC的 o是平面上的一点,A B C是平面上的不共线的三个点,动点P满足OP向量=OA向量+λ(AB向量/AB向量的模 + AC向o是平面上的一点,A B C是平面上的不共线的三个点,动点P满足OP向量=OA向量+λ(AB向量/AB 已知O,A,B是平面上不共线的三点,直线AB上有一点C,满足2倍的向量AC+向量CB=0 ..(1)用向量AB,OB表示向量OC;(2)若点D是OB的中点,证明四边形OCAD是梯型. 已知O是平面上一丁点,ABC是平面上不共线的三点,动点P满足向量OP=(向量OB+向量OC)/2+λ(向量AB/(|向量AB|cosB)+向量AC/(|向量AC|cosC),已知O是平面上一丁点,ABC是平面上不共线的三点,动点P满