不定积分的dx有什么意义 并且给出证明的过程.额 各位大虾,为什么不定积分要乘一个dx,不是单纯dx的意义
不定积分的dx有什么意义 并且给出证明的过程.额 各位大虾,为什么不定积分要乘一个dx,不是单纯dx的意义
不定积分的dx有什么意义 并且给出证明的过程.
额 各位大虾,为什么不定积分要乘一个dx,不是单纯dx的意义
不定积分的dx有什么意义 并且给出证明的过程.额 各位大虾,为什么不定积分要乘一个dx,不是单纯dx的意义
搞清两个概念就能理解d的含义了.
1、增量的概念:
Δx = x2 - x1,Δy = y2 - y1
这里的Δ就是增量的意思,只要是后面的量减前面的量,无论正负都叫增量.
2、无限小的概念:
当一个变量x,越来越趋向于一个数值a时,这个趋向的过程无止境的进行,
x与a的差值无限趋向于0,我们就说a是x的极限.
这个差值,我们称它为“无穷小”,它是一个越来越小的过程,一个无限趋
向于0的过程,它不是一个很小的数,而是一个趋向于0的过程.
3、Δ一方面表示增量的概念,如果x1与x2差距很小,这个小是有限的小.只要
写得出来,无论多少位小数点,只要你写得出,只要你的笔一停,都是有限的小.
当x1与x2的差距在无止境的减小,无止境的靠近,在靠近的过程中,x1与x2
的差距无止境的趋近于0.这时我们写成dx,也就是说,Δx是有限小的量,
dx是无限小的量.
4、d的来源,本来是 difference = 差距.当此差距无止境的趋向于0时,演变
为 differentiation,就变成了无限小的意思,称为“微分”.
“微分”是一个过程,是无止境的“分割”,无止境的“区分”的过程.
微分的动词是 differentiate.
英文的 derivative 在微积分中,就是“导数”,d 在这里的意思,也是
我们在翻译微积分时,我们的前辈,考虑到 derivative 源于 derive,
“导数”的“导”字,来源于此,是“衍生”、“导致”、“由此而得到”
的意思.
5、Δy/Δx 表示的一条割线的斜率,也可以表示一条切线的斜率;
dy/dx 表示的是当Δx趋近于0时的Δy/Δx,记为dy/dx,是曲线上任意一点的切线
的斜率.
这方面的细细斟酌是非常值得的,要全部写出,就是一本《数学分析》,也就是一本厚厚的《微积分》了.楼主若想仔细研究,有任何问题,请Hi我,我为你详细解释.
1、在给定的区间上,将函数图形下的面积划分成无数个竖长的长方形,
每个长方形的高是不一样的,不同的x对应于不同的高,这个高就是f(x).
2、f(x)dx就是在x处的长方形的面积.
3、积分符号 ∫ 的意思就是求和.∫f(x)dx 就是所有长方形的面积之和.
这就是积分的几何意义.
4、本来的函数f(x),我们现在给它另取了一个名字:被积函数.
就是被拿来积分的函数.
总而言之:
a、f(x)只是在x处的竖直长方形的高,不乘以dx不成为面积;
b、f(x)dx只是一个无限窄的竖直长方形的面积,不求和不是总面积;
有限个或无限个离散数的求和是∑,无限个连续数求和就是∫.
dx代表x的微分,也就是代表一个无限小的x的变化量。可以想象:在坐标轴上一个点(x,y),往右挪了一点点(很小很小的一点点),那么x变大了多少?答案就是变大了dx
证明过程。。。所有数四以上的书都有,应该在导数和微分那一章,我就不敲了哈。...
全部展开
dx代表x的微分,也就是代表一个无限小的x的变化量。可以想象:在坐标轴上一个点(x,y),往右挪了一点点(很小很小的一点点),那么x变大了多少?答案就是变大了dx
证明过程。。。所有数四以上的书都有,应该在导数和微分那一章,我就不敲了哈。
收起