1X2X3分之一+2X3X4分之一+.+48X49X50分之一等于几

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/01 06:50:53

1X2X3分之一+2X3X4分之一+.+48X49X50分之一等于几
1X2X3分之一+2X3X4分之一+.+48X49X50分之一等于几

1X2X3分之一+2X3X4分之一+.+48X49X50分之一等于几
原式=1/2*(1/1*2-1/2*3)+1/2*(1/2*3-1/3*4)+……+1/2*(1/48*49-1/49*50)
=1/2*(1/1*2-1/2*3+1/2*3-1/3*4+……+1/48*49-1/49*50)
=1/2*(1/1*2-1/49*50)
=306/1225

解.裂项法.
1/[n(n+1)(n+2)]=(1/2){1/[n)n+1)]-1/[(n+1)(n+2)]}
=(1/2)[1/n-1/(n+1)-1/(n+1)+1/(n+2)]
=(1/2)[1/n-2/(n+1)+1/(n+2)]
S=1/1x2x3+1/2x3x4+1/3x4x5+...+1x/n(n+1)(n+2)
=(1/2)[1/1...

全部展开

解.裂项法.
1/[n(n+1)(n+2)]=(1/2){1/[n)n+1)]-1/[(n+1)(n+2)]}
=(1/2)[1/n-1/(n+1)-1/(n+1)+1/(n+2)]
=(1/2)[1/n-2/(n+1)+1/(n+2)]
S=1/1x2x3+1/2x3x4+1/3x4x5+...+1x/n(n+1)(n+2)
=(1/2)[1/1-2/2+1/3+1/2-2/3+1/4+1/3-2/4+1/5+/4-2/5+1/6
+.....+1/n-2/(n+1)+1/(n+2)]
=(1/2)[1-1/2-1/(n+1)+1/(n+2)]
=(n^2+3n)/[4(n+1)(n+2)]

收起